Search results for "width [Lambda(1405)]"

showing 10 items of 330 documents

Fabrication of long period fiber gratings of subnanometric bandwidth.

2017

This paper reports on the fabrication of long period fiber gratings having subnanometric bandwidth in the 1500 nm spectral region. Large gratings have been photo-inscribed in a high NA fiber, the grating pitch and the order of the HE cladding mode are optimized to produce gratings with a large number of periods and preventing the coupling to TE, TM or EH modes. Resonances with a FWHM of 0.83 nm and 0.68 nm have been achieved for gratings 15 and 20 cm long respectively, the free spectral range between transmission notches is 125 nm. The polarization effects and the sensitivity of the gratings to temperature and to strain variations are presented as well. © 2015 Optical Society of America Thi…

Materials scienceFabrication02 engineering and technologyGratingFiber optics01 natural sciencesMultiplexing010309 optics020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiber Bragg gratingsbusiness.industryFiber optics sensorsResonanceCladding modePolarization (waves)Atomic and Molecular Physics and OpticsUNESCO::FÍSICA::Óptica ::Fibras ópticasFull width at half maximum:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fourier optics and signal processingbusinessRefractive indexFree spectral rangeOptics letters
researchProduct

Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2–150 kHz Frequency Range

2017

The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2–150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which…

Materials scienceInterference (communication)EMIAcousticselectrical_electronic_engineeringElectromagnetic compatibilityFerrite (magnet)Insertion lossFilter (signal processing)Electrical impedancePulse-width modulation
researchProduct

Nonlinear optical properties of silver nanoparticles: separating thermo-optical and Kerr effects

2021

In this paper, we present a study on thermo-optical effect in core-shell silver/thiol-termination ligand nanoparticles. Nanoparticles were dissolved in Dichloromethane. Experimental measurements were carried out using a Z-scan setup. As laser sources we used two 1064 nm lasers: i) 28 ps pulse width laser with 1000 Hz pulse repetition rate; ii) 8 ns pulse width laser with changeable pulse repetition rate 200 – 40 000 Hz. To study what processes lead to refractive index changes we used the polarization-resolved Z-scan method. Comparing ps and ns results showed that response time of single pulse thermal effects for organic solvents depends on beam size while for nanoparticles it corresponds to…

Materials scienceKerr effectPulse (signal processing)business.industryNonlinear opticsNanoparticleLaserSilver nanoparticlelaw.inventionlawOptoelectronicsbusinessRefractive indexPulse-width modulationPlasmonics VI
researchProduct

Improved All-Fiber Acousto-Optic Tunable Bandpass Filter

2017

An all-fiber acousto-optic tunable bandpass filter based on a 1.185-mm long coreless core mode blocker is reported. Experimental results demonstrate a minimal insertion loss of 1.2 dB at the optical resonant wavelength of 1527.7 nm with 3-dB optical bandwidth of 0.83 nm. The optimization of the device takes into account the attenuation of the acoustic wave and leads to an asymmetric configuration in which the coupling section is shorter than the recoupling part. Under the effect of a standing flexural wave the device can be operated as a bandpass modulator. The device exhibits a maximum modulation depth of 28%, 4 dB of insertion loss and 0.97 nm of optical bandwidth at 4.774 MHz.

Materials scienceOptical fiber02 engineering and technology01 natural scienceslaw.invention010309 opticsAmplitude modulationOpticsBand-pass filterlaw0103 physical sciencesInsertion lossOptical fibersElectrical and Electronic EngineeringModulationbusiness.industryAttenuationBandwidth (signal processing)021001 nanoscience & nanotechnologyUNESCO::FÍSICA::Óptica ::Fibras ópticasAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthAcoustic waves:FÍSICA::Óptica ::Fibras ópticas [UNESCO]ModulationCouplings0210 nano-technologybusinessOptical attenuatorsIEEE Photonics Technology Letters
researchProduct

Wavelength conversion from 1.3 µm to 1.5 µm in single-mode optical fibres using Raman-assisted three-wave mixing

2000

International audience; We theoretically analyse the achievement of wide-range all-optical wavelength conversion of a 1.31 µm signal to an idler wave in the 1.5 µm spectral region by Raman-assisted three-wave mixing in single-mode optical fibres. Raman-assisted three-wave mixing allows efficient conversion on a large frequency detuning bandwidth while alleviating the need for stringent phase-matching conditions.

Materials scienceOptical fiber[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryBandwidth (signal processing)Single-mode optical fiberPhysics::Optics02 engineering and technologyWavelength conversion01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRaman spectroscopy
researchProduct

Optical absorption and electron paramagnetic resonance of theEα′center in amorphous silicon dioxide

2008

We report a combined study by optical absorption (OA) and electron paramagnetic resonance (EPR) spectroscopy on the E{sub {alpha}}{sup '} point defect in amorphous silicon dioxide (a-SiO{sub 2}). This defect has been studied in {beta}-ray irradiated and thermally treated oxygen-deficient a-SiO{sub 2} materials. Our results have pointed out that the E{sub {alpha}}{sup '} center is responsible for an OA Gaussian band peaked at {approx}5.8 eV and having a full width at half maximum of {approx}0.6 eV. The estimated oscillator strength of the related electronic transition is {approx}0.14. Furthermore, we have found that this OA band is quite similar to that of the E{sub {gamma}}{sup '} center in…

Materials scienceOscillator strengthCenter (category theory)Condensed Matter PhysicsCrystallographic defectMolecular electronic transitionElectronic Optical and Magnetic Materialslaw.inventionFull width at half maximumParamagnetismCrystallographylawAbsorption (logic)Atomic physicsElectron paramagnetic resonancePhysical Review B
researchProduct

The controlled growth of GaN microrods on Si(111) substrates by MOCVD

2015

Abstract In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiN x /Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 ¯ 1 } planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm −1 ) with crystal quality comparable to bu…

Materials sciencePhotoluminescenceScanning electron microscopebusiness.industryNanotechnologyChemical vapor depositionCondensed Matter PhysicsSilaneInorganic ChemistryCrystalFull width at half maximumsymbols.namesakechemistry.chemical_compoundchemistryMaterials ChemistrysymbolsOptoelectronicsMetalorganic vapour phase epitaxybusinessRaman spectroscopyJournal of Crystal Growth
researchProduct

Optical, structural, and morphological characterisation of epitaxial ZnO films grown by pulsed-laser deposition

2013

We report on ZnO epitaxial growth by pulsed-laser deposition (PLD) on different substrates, such as quartz, sapphire, and GaN template. Approximately 1 mu m-thick films were grown under different substrate temperatures and background oxygen conditions. X-ray diffraction analysis indicated preferential growth along the c-axis direction with a full-width at half maximum(FWHM) of the rocking curve as narrow as 230 arcs in the case of the GaN template. Low-temperature photoluminescence showed A-excitonic emission near 3.36 eV and a FWHM of (DXA)-X-0 emission as small as 2.89 meV at 9 K. Atomic force microscope measurements showed that roughness as low as 18 nm could be obtained. These results p…

Materials sciencePhotoluminescenceStructural propertiesbusiness.industryMetals and AlloysPulsed laser depositionSurfaces and InterfacesSubstrate (electronics)EpitaxySettore ING-INF/01 - ElettronicaSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulsed laser depositionFull width at half maximumCrystallinityOpticsSurface roughnessZinc oxidePulsed laser deposition Zinc oxide Photoluminescence Structural properties Surface roughness.Materials ChemistrySapphireOptoelectronicsLuminescencebusinessPhotoluminescence
researchProduct

Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

2019

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…

Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusiness
researchProduct

Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser

2017

The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results de…

Materials sciencePhysics and Astronomy (miscellaneous)business.industryAmplifierBandwidth (signal processing)02 engineering and technology01 natural sciencesNonlinear optical fiberUNESCO::FÍSICA::Óptica ::Fibras ópticasSupercontinuum010309 optics020210 optoelectronics & photonics:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessInstrumentationErbium doped fiber laserssupercontinuum generationnonlinear effects
researchProduct